Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Ping Zhang and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.049$
$w R$ factor $=0.160$
Data-to-parameter ratio $=11.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis\{4-[(4-pyridyl)ethenyl]pyridinium\} 4-sulfonatobenzoate trihydrate

In the crystal structure of the title organic proton-transfer complex, $2 \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}^{2-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the cations form onedimensional chains via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and these chains, in turn, form a two-dimensional network through $\pi-\pi$ stacking interactions. In addition, the anions and water molecules are connected into a twodimensional hydrogen-bonded network through intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The two motifs result in sheets of cations and anions stacked alternately.

Comment

We have recently synthesized some 4-sulfobenzoate (sb) metal complexes exhibiting diverse topologies (Fan et al., 2004; Zhang \& Zhu, 2005; Zhang, Zhu \& Ng, 2005), but there are no crystal structures of organic complexes with sb reported in the literature. We prepared a system of $\mathrm{Pb}^{2+} / \mathrm{sb} / 1,10$-phenanthroline under hydrothermal conditions, which gave a twodimensional polymer with μ_{4}-sb (Zhang, Zhu \& Xiao, 2005). However, we unexpectedly prepared an organic complex, (I), using the 1,2-bis(4-pyridine)ethylene (bpe) ligand instead of 1,10-phenanthroline in the above procedure.

The title complex, (I), consists of two singly protonated bpe cations, a 4-sulfonatobenzoate dianion and three solvent water molecules (Fig. 1). The dihedral angles between the two pyridine rings of the Hbpe^{+}cations are 10.7 (1) and 11.95 (9) ${ }^{\circ}$ for the cations containing atoms N 1 and N 3 , respectively. The protonated bpe species form one-dimensional $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded chains and are further connected into sheets via $\pi-\pi$ stacking interactions between pyridine rings from adjacent chains. The centroid-centroid distances are 3.6024 (16), 3.6884 (17) and 3.6411 (18) \AA, respectively, for $C g 1 \cdots C g 1^{\text {i }}, C g 2 \cdots C g 3^{\text {ii }}$ and $C g 4 \cdots C g(4)^{\text {iii }}$ [where $C g 1$ is the centroid defined by atoms $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{N} 1, C g 2$ by $\mathrm{C} 8-\mathrm{C} 12 / \mathrm{N} 2, C g 3$ by C13-C17/N3 and Cg4 by C20-C24/N2; symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $1-x, 1-y,-z$; (iii) $3-x, 1-y,-z]$. In addtion, sb dianions and water molecules form a twodimensional layer through extensive $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions (Fig. 2 and Table 1). The two motifs result in sheets of cations and anions stacked alternately (Fig. 3).

Received 13 March 2006 Accepted 15 March 2006

Figure 1
The asymmetric unit of (I), with displacement ellipsoids are drawn at the 40% probability level. Dashed lines indicate hydrogen bonds. The minor disorder component of the sulfonate group has been omitted for clarity. .

Figure 2
A view of the two-dimensional hydrogen-bonded anionic layer in (I), with hydrogen bonds shown as dashed lines. The minor disorder component of the sulfonate group has been omitted for clarity.

Packing plot (Spek, 2003) showing alternating sheets of hydrogen-bonded (dashed lines) sheets of anions and cations. Colour codes: green S, red O, blue N and black C . H atoms not involved in hydrogen bonding have been omitted.

Experimental

A mixture of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.095 \mathrm{~g}, 0.29 \mathrm{mmol})$, potassium hydrogen 4sulfobenzoate $(0.060 \mathrm{~g}, 0.25 \mathrm{mmol})$, and 1,2-bis(4-pyridine)ethylene $(0.045 \mathrm{~g}, 0.25 \mathrm{mmol})$ in an aqueous solution $(15 \mathrm{ml})$ was sealed in a 25 ml stainless steel reactor with Teflon liner, and heated at 453 K for 24 h . When cooled to room temperature, a clear solution was obtained which was allowed to evaporate slowly. After 4 d , yellow block-shaped crystals of (I) were collected by suction filtration.

Crystal data

$2 \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}^{2-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=620.67$
Triclinic, $P \overline{1}$
$a=7.4704$ (15) £
$b=9.2406(18) \AA$
$c=22.121$ (4) \AA
$\alpha=99.099(19)^{\circ}$
$\beta=94.823(14)^{\circ}$
$\gamma=103.471(17)^{\circ}$
$V=1454.7(5) \AA^{3}$
$Z=2$
Data collection
Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.933, T_{\text {max }}=0.972$
11622 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.160$
$S=1.10$
5156 reflections
449 parameters
H -atom parameters constrained
$D_{x}=1.417 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6599 reflections

$\theta=3.1-27.5^{\circ}$

$\mu=0.17 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, yellow
$0.41 \times 0.25 \times 0.18 \mathrm{~mm}$

5156 independent reflections 3874 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-8 \rightarrow 8$
$k=-11 \rightarrow 11$
$l=-26 \rightarrow 26$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1022 P)^{2}\right. \\
& \quad+0.0982 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.49 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 14 \cdots \mathrm{~N} 3$	0.83 (1)	1.92 (1)	2.742 (3)	174 (4)
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{~N}{ }^{\text {i }}$	0.83 (1)	1.85 (1)	2.683 (3)	175 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 C \cdots \mathrm{O}^{\prime \text { 'ii }}$	0.85 (1)	2.07 (1)	2.906 (8)	170 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 C \cdots \mathrm{O} 5^{\text {ii }}$	0.85 (1)	2.28 (2)	3.057 (7)	152 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 C \cdots \mathrm{O} 4^{\text {ii }}$	0.85 (1)	2.62 (2)	3.384 (7)	150 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 3$	0.85 (1)	2.12 (2)	2.916 (5)	157 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O}^{\prime}$	0.85 (1)	2.15 (2)	2.946 (14)	156 (4)
$\mathrm{O} 2 W-\mathrm{H} 2 A \cdots \mathrm{O} 3 W^{\text {iii }}$	0.87 (3)	1.91 (2)	2.695 (5)	150 (3)
$\mathrm{O} 3 W-\mathrm{H} 3 A \cdots \mathrm{O} 2 W^{\text {iv }}$	0.86 (3)	2.18 (3)	2.774 (5)	126 (3)
$\mathrm{O} 3 W-\mathrm{H} 3 B \cdots \mathrm{O} 1$	0.85 (3)	2.05 (3)	2.899 (4)	175 (4)
$\mathrm{O} 3 W-\mathrm{H} 3 B \cdots \mathrm{O} 2$	0.85 (3)	2.55 (3)	3.075 (4)	121 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 B \cdots \mathrm{O} 2$	0.87 (3)	1.82 (3)	2.677 (4)	171 (3)

Symmetry codes: (i) $x+1, y, z-1$; (ii) $-x,-y+2,-z+1$; (iii) $x-1, y, z$; (iv) $-x+1,-y+2,-z$.

H atoms bonded to C atoms were placed in idealized positions and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. H atoms bound to O and N atoms were located in difference Fourier maps and refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and $\mathrm{N}-\mathrm{H}=0.82(1) \AA$, and fixed isotropic displacement parameter of $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$. The sulfonate O atoms are disordered over two

organic papers

positions in the ratio 0.685 (7):0.315 (7) for atoms O3/O4/O5 and $\mathrm{O}^{\prime} /$ O4'/O5', respectively.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Heilongjiang University for the diffraction measurements, the National Natural Science Foundation of China (grant No. 50073019) and the Analytical and Measurement Fund of Zhejiang Province.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Fan, S.-R., Xiao, H.-P., Zhang, L.-P., Cai, G.-Q. \& Zhu, L.-G. (2004). Acta Cryst. E60, m1970-m1972.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zhang, L.-P. \& Zhu, L.-G. (2005). Acta Cryst. E61, m1768-m1770.
Zhang, L.-P., Zhu, L.-G. \& Ng, S.-W. (2005). Main Group Met. Chem. 28, 41-43.
Zhang, L.-P., Zhu, L.-G. \& Xiao, H.-P. (2005). Acta Cryst. E61, m860-m862.

[^0]: © 2006 International Union of Crystallography All rights reserved

